
COMP 110/L Lecture 14
Maryam Jalali

Sides adapted from Dr. Kyle Dewey

Outline

• Loops

•while

•for

•do...while

• Shorthand variable updates

Loops

Motivation
Some computations need to be performed multiple times

We need a way of repeating code!

Motivation
Some computations need to be performed multiple times

Question: given only +, how can*be implemented?

3 * 4

Motivation
Some computations need to be performed multiple times

Question: given only +, how can *be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

Motivation
Some computations need to be performed multiple times

Question: given only +, how can *be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

Motivation
Some computations need to be performed multiple times

Question: given only +, how can *be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

A * B

Motivation
Some computations need to be performed multiple times

Question: given only +, how can *be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

A * B
Add A to itself B times
(with some extra rules)

public static int
multiply(int a, int b) {

...
}

public static int
multiply(int a, int b) {

switch(b) {
case 0:
return 0;

case 1:
return a;

case 2:
return a + a;

case 3:
return a + a + a;

...
}

}

Enter while
Intuition: while a condition is true, execute the given code.
Condition checked, all code executed, conditionchecked...

Three essential components

• An initialization statement that specifies how the loop begins
• A continuation (or termination) condition that specifies whether

the loop should continue to execute or terminate
• An iteration statement that makes progress toward the

termination condition

Enter while
Intuition: while a condition is true, execute the given code.
Condition checked, all code executed, conditionchecked...

int x = 0;
while (x < 10) {
System.out.println(x);
x = x + 1;

}

Example:
WhileXLessThan10.java

Revisiting Multiplication:
MultiplyWithWhile.java

while Caveat
Counterintuitively, it does not exactly mean:

“while condition is true”

while Caveat
Counterintuitively, it does not exactly mean:

“while condition is true”

int x = 0;
while (x < 5) {
System.out.println(“hi”);
x = 10;
System.out.println(“bye”);

}

while Caveat
Counterintuitively, it does not exactly mean:

“while condition is true”

int x = 0;
while (x < 5) {Condition only checked here

System.out.println(“hi”);
x = 10;
System.out.println(“bye”);

}

Prints:
hi
bye

A Pattern Emerges

• Many loops commonly:

• Do some sort of initialization

• Check some sort of condition

• Update some variables on each iteration

• Special type of loop for this:for

for Loops

for Loops
int x = 0;
while (x < 10) {
System.out.println(x);
x = x + 1;

}

for Loops
int x = 0;
while (x < 10) {

System.out.println(x);
x = x + 1;

}

Initialization

for Loops
int x = 0; Initialization
while (x < 10) {Condition check
System.out.println(x);
x = x + 1;

}

for Loops
int x = 0; Initialization
while (x < 10) {Condition check
System.out.println(x);
x = x + 1;Variable update

}

for Loops
int x = 0; Initialization
while (x < 10) {Condition check
System.out.println(x);
x = x + 1;Variable update

}

for (int x = 0; x < 10; x = x + 1) {
System.out.println(x);

}

for Loops
int x = 0; Initialization
while (x < 10) {Condition check

System.out.println(x);
x = x + 1;Variable update

}

Initialization
for (int x = 0; x < 10; x = x + 1) {

System.out.println(x);
}

for Loops
int x = 0; Initialization
while (x < 10) {Condition check

System.out.println(x);
x = x + 1;Variable update

}

Initialization Condition check
for (int x = 0; x < 10; x = x + 1) {

System.out.println(x);
}

for Loops
int x = 0; Initialization
while (x < 10) {Condition check

System.out.println(x);
x = x + 1;Variable update

}

Initialization Condition check Variable update
for (int x = 0; x < 10; x = x + 1) {

System.out.println(x);
}

Example:
ForXLessThan10.java

Revisiting Multiplication:
MultiplyWithFor.java

Same Condition Caveat
Condition is only checked at the start of the loop.

Increment is only done at the end of the loop.

Same Condition Caveat
Condition is only checked at the start of the loop.

Increment is only done at the end of the loop.

for (int x = 0; x < 5;) {
System.out.println(“hi”);
x = 10;
System.out.println(“bye”);

}

Same Condition Caveat
Condition is only checked at the start of the loop.

Increment is only done at the end of the loop.

Condition only checked here
for (int x = 0; x < 5;) {

System.out.println(“hi”);
x = 10;
System.out.println(“bye”);

}

Prints:
hi
bye

for vs. while
• Sometimes for is more appropriate, sometimes

while

• Either will work in any situation where a loop is needed

• In general you use a for loop when you know how many

(even a variable number of) iterations you are going to

execute

• In general you use a while loop when you don’t know (up

front) how many iterations you will execute

do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.

do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.

int x = 0;
do {

System.out.println(x);
x = x + 1;

} while (x < 10);

Example:
DoWhileXLessThan10.java

Multiplication with
do...while

Conversion to do...while would be incorrect

Multiplication with
do...while

Conversion to do...while would be incorrect

public static int
multiply(int a, int b) {

int result = 0;
while (b > 0) {

result = result + a;
b = b - 1;

}
return result;

}

Multiplication with
do...while

Conversion to do...while would be incorrect

public static int
multiply(int a, int b) {

int result = 0;
while (b
result = result + a;
b = b - 1;

}
return result;

}

Won’t be true
> 0) { if b initially was 0

ShorthandVariable
Updates

Motivation
We very often update variables in loops

Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

x++ OR ++x
b-- OR --b
result += a;

Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

x++ OR ++x
b-- OR --b
result += a;

Saves some typing,very commonly used.

