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Sides adapted from Dr. Kyle Dewey



Outline

• Loops

•while

•for

•do...while

• Shorthand variable updates



Loops



Motivation
Some computations need to be performed multiple times
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Motivation
Some computations need to be performed multiple times

Question: given only +, how can *be implemented?

3 * 4

3 + 3 + 3 + 3 (or 4 + 4 + 4)

12

A * B
Add A to itself B times  
(with some extra rules)





public static int  
multiply(int a, int b) {

...
}



public static int  
multiply(int a, int b) {

switch(b) {  
case 0:
return 0;

case 1:  
return a;

case 2:
return a + a;  

case 3:
return a + a + a;

...
}

}



Enter while
Intuition: while a condition is true, execute the given code.  
Condition checked, all code executed, conditionchecked...



Three essential components

• An initialization statement that specifies how the loop begins
• A continuation (or termination) condition that specifies whether 

the loop should continue to execute or terminate
• An iteration statement that makes progress toward the 

termination condition



Enter while
Intuition: while a condition is true, execute the given code.  
Condition checked, all code executed, conditionchecked...

int x = 0;
while (x < 10) {
System.out.println(x);  
x = x + 1;

}



Example:
WhileXLessThan10.java



Revisiting Multiplication:
MultiplyWithWhile.java
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while Caveat
Counterintuitively, it does not exactly mean:  

“while condition is true”

int x = 0;
while (x < 5) {Condition only checked here

System.out.println(“hi”);  
x = 10;
System.out.println(“bye”);

}

Prints:  
hi  
bye



A Pattern Emerges

• Many loops commonly:

• Do some sort of initialization

• Check some sort of condition

• Update some variables on each iteration

• Special type of loop for this:for



for Loops
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System.out.println(x);  
x = x + 1;

}

Initialization



for Loops
int x = 0; Initialization
while (x < 10) {Condition check
System.out.println(x);  
x = x + 1;

}



for Loops
int x = 0; Initialization
while (x < 10) {Condition check
System.out.println(x);
x = x + 1;Variable update

}



for Loops
int x = 0; Initialization
while (x < 10) {Condition check
System.out.println(x);
x = x + 1;Variable update

}

for (int x = 0; x < 10; x = x + 1) {  
System.out.println(x);

}



for Loops
int x = 0; Initialization
while (x < 10) {Condition check

System.out.println(x);
x = x + 1;Variable update

}

Initialization
for (int x = 0; x < 10; x = x + 1) {  

System.out.println(x);
}



for Loops
int x = 0; Initialization
while (x < 10) {Condition check

System.out.println(x);
x = x + 1;Variable update

}

Initialization Condition check
for (int x = 0; x < 10; x = x + 1) {  

System.out.println(x);
}



for Loops
int x = 0; Initialization
while (x < 10) {Condition check

System.out.println(x);
x = x + 1;Variable update

}

Initialization Condition check Variable update
for (int x = 0; x < 10; x = x + 1) {  

System.out.println(x);
}



Example:
ForXLessThan10.java



Revisiting Multiplication:
MultiplyWithFor.java
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Increment is only done at the end of the loop.
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Same Condition Caveat
Condition is only checked at the start of the loop.

Increment is only done at the end of the loop.

Condition only checked here
for (int x = 0; x < 5;) {  

System.out.println(“hi”);  
x = 10;
System.out.println(“bye”);

}

Prints:  
hi  
bye



for vs. while
• Sometimes for is more appropriate,  sometimes

while

• Either will work in any situation where a  loop is needed

• In general you use a for loop when you know how many 

(even a variable number of) iterations you are going to 

execute

• In general you use a while loop when you don’t know (up 

front) how many iterations you will execute 



do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.



do...while Loops
Like a while loop, but the condition is checked at the end.
do...while always executes at least once, unlike while.

int x = 0;
do {

System.out.println(x);
x = x + 1;

} while (x < 10);



Example:
DoWhileXLessThan10.java



Multiplication with
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Conversion to do...while would be incorrect



Multiplication with
do...while

Conversion to do...while would be incorrect

public static int  
multiply(int a, int b) {

int result = 0;  
while (b > 0) {

result = result + a;  
b = b - 1;

}
return result;

}



Multiplication with
do...while

Conversion to do...while would be incorrect

public static int  
multiply(int a, int b) {

int result = 0;
while (b
result = result + a;  
b = b - 1;

}
return result;

}

Won’t be true
> 0) { if b initially was 0



ShorthandVariable  
Updates
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Motivation
We very often update variables in loops

x = x + 1;
b = b - 1;
result = result + a;

x++ OR ++x  
b-- OR --b
result += a;

Saves some typing,very commonly used.


